
The Actionable Explanations for Student Success
Prediction Models: A Benchmark Study on the Quality of

Counterfactual Methods

Mustafa Cavus
Eskisehir Technical University, Department of

Statistics, Eskisehir, Turkiye
mustafacavus@eskisehir.edu.tr

Jakub Kuzilek
Humboldt University of Berlin, Unter den Linden

6, Berlin, Germany
jakub.kuzilek@hu-berlin.de

ABSTRACT
Digital transformation in higher education resulted in a surge
of information technology solutions suited for the needs of
academia. The massive use of digital technology in edu-
cation leads to the production of vast amounts of educa-
tion and learner-related data, enabling advanced data anal-
ysis methods to explore and support the learning processes.
When focusing on supporting at-risk students, the domi-
nant research focuses on predicting student success. En-
abling prediction models to help at-risk students involves a
reliable technical solution and a transparent and explain-
able solution to build trust among the target learners and
educators. Counterfactual explanations (aka counterfactu-
als) from explainable machine learning tools promise to en-
able trustful explainable models, provided the features are
actionable and causal. However, determining the most suit-
able counterfactual generation method for student success
prediction models remains unexplored. This study eval-
uates standard counterfactual methods —Multi-Objective
Counterfactual Explanations, Nearest Instance Counterfac-
tual Explanations, and What-If Counterfactual Explana-
tions. The methods are evaluated using a black-box machine
learning model trained on the Open University Learning An-
alytics dataset, demonstrating their practical usefulness and
suggesting concrete steps for model prediction alteration.
Our results indicate that the Nearest Instance Counterfac-
tual Explanation method based on the sparsity metric pro-
vides the best results regarding several quality criteria. De-
tailed statistical analysis finds statistically significant dif-
ferences between all methods except the difference between
the Nearest Instance Counterfactual Explanation and the
Multi-Objective Counterfactual Explanation method, which
suggests that the methods might be interchangeable in the
context of the given dataset.
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1. INTRODUCTION
The pace of digital transformation in higher education in-
creased over the decade. With this increase, the data gen-
erated by the learners, lecturers, and educational institu-
tions are multiplied. The data growth enabled the use of
advanced Data Science methods for the analysis within the
field of Learning Analytics [1]. With the extensive use of
analytical tools in all areas of human life concerns about
security and privacy emerged, resulting in new data pro-
tection regulations (e.g., GDPR in EU) [2]. Consequently,
trust in advanced analytical tools and Machine Learning
methods in higher education has been reduced. To over-
come the distrust, a new approach called Trusted Learning
Analytics emerged [3]. The TLA approach emphasizes us-
ing ‘white box‘ Machine Learning (ML) methods and sys-
tems. Within this focus, the Explainable Artificial Intelli-
gence (XAI) methods play a crucial role because they un-
lock the potential of the ‘black box‘ models for use within
the TLA systems [3].

A typical task in Learning Analytics (LA) is the predictive
modelling of learner success, which enables identifying the
learners needing help with their studies [4]. The ML model
is trained with historical data collected within the same ed-
ucational context. This particular model is then used as a
trigger for educational intervention to support learners in
need (i. e. [5], [6] or [7].

In the ML modelling process, black box models, known for
their high predictive accuracy, are often preferred over in-
terpretable models [8, 9, 10]. The XAI tools are primarily
categorized into global and local. At the global level, they
reveal which variables are important in the model. In con-
trast, at the local level, they answer questions about the
contributions of variables in generating individual predic-
tions [11, 12, 13]. However, commonly used global and local
tools, while sufficient for understanding the prediction made
for a particular observation, are not sufficient for generating
a counterfactual understanding of an undesirable outcome.
Therefore, counterfactual explanations have become popu-
lar, defined as the necessary changes in the values of vari-
ables to flip the model’s prediction into the intended out-
come [14]. Although student success prediction models may
indicate an unfavorable prediction for a student, they do not
generate output for reversing the student’s situation. Using
counterfactual explanations alongside such models is highly
promising for addressing this issue. Students, teachers, and



curriculum designers are guided toward actions or measures
to be taken through their generated explanations.

The use of counterfactual explanations in LA has been ex-
plored in several studies [15, 16, 17]. Yet, the focus of coun-
terfactual explanations is in the frame of delivering action-
able insights to the relevant stakeholders. None of the stud-
ies have investigated the quality of the generated counter-
factual explanations. Facing numerous counterfactual ex-
planations due to the nature of optimization problems re-
quires selecting those explanations that fulfil specific criteria
beneficial for the stakeholder. Because of their background,
challenges, and needs differences, each learner requires per-
sonalized counterfactual [18]. Thus, several desired quality
measures that a counterfactual explanation must satisfy.

To explore how the typical ML black box model trained for
the predictive modelling of student success within the frame
of TLA, we employed the open-access dataset Open Univer-
sity Learning Analytics Dataset (OULAD) [19] to answer
the following research questions:

RQ1: What is the most appropriate method for generating
the counterfactual explanations?

RQ2: What is the most relevant quality measure of the meth-
ods for generating counterfactual explanations?

This study compares the qualities of different counterfactual
generation methods for students whose success prediction
model developed on the OULAD anticipates failing. It is
essential in two ways: (1) because the missing evaluation
of the counterfactual quality can lead to inefficient explana-
tions, and this may compromise their trustworthiness [20],
and (2) there is no uniformly better method for each domain
[21] and this is the first benchmark in the domain of LA.

The remainder of the paper introduces our approach for
analysis and selecting the most appropriate counterfactual
generation method followed by the results and their discus-
sion. Finally, the conclusions are presented.

2. METHODS
2.1 Data
Dataset. We employed the OULAD dataset released by the
Open University, the largest distance learning institution in
the United Kingdom, to analyse counterfactual generating
methods. The typical courses at OU take approximately
nine months and consist of multiple assignments and a final
exam. The most crucial assignments are Tutor Marked As-
signments (TMAs), which represent milestones in the course
schedule. The dataset contains data about learners’ demo-
graphics, assessment results, and interaction with Moodle-
like Learning Management System (LMS). For the analysis,
we selected STEM course FFF and its presentation 2013J
studied by 2283 students. The course contains five TMAs
in weeks 2, 5, 13, 18, and 24. The last TMA was used as
a target variable for model training. Learners can achieve
scores from 0 to 100; we set a threshold for passing to 40
points. The following groups of students were excluded from
the data set: actively withdrawn students (n = 675) and stu-
dents who did not submit all TMAs (n = 500). The resulting

Figure 1: An illustration of the counterfactual generation

dataset contains the data of 1108 students. It consists of 14
predictors from which 6 of categorical variables are encoded
numerically. The online interactions of learners with the
LMS (i.e., ‘n clicks xy‘ variables) have been computed for
the top five most common activity types in the VLE, and
they represent 95% of all student click-stream data. Table 1
presents the details of selected variables.

2.2 Counterfactual Explanations
Let X = [x1, x2, ..., xp] be a data matrix of n observations
from p variables, and y be the response vector. The goal is
to find f : X → y that minimizes the expected value of the
loss function L in predictive modelling. A counterfactual
x′ ∈ Rp of an observation x ∈ Rp is calculated through an
optimization problem:

argminx′∈RpL[f(x′), y′] + d(x, x′) (1)

where Rp denotes the p-dimensional real space, L denotes
a loss function that penalizes deviation of the prediction
f(x′) from the interested outcome y′ and d, represents a
distance function between the observation and its counter-
factual. A counterfactual explanation can be briefly defined
as the necessary changes in one or more than one variable to
flip the model prediction. The distance function d controls
the distance between the target observation and the coun-
terfactual. Figure 1 illustrates a counterfactual generation
example. The value of the variable X3 must be changed to
x′
3 to flip the model’s prediction y to y′. To illustrate this in

the context of the OULAD dataset: An at-risk student can
pass the course if the student increases assessment results or
the total number of clicks in the discussion forum before the
final exam.

Counterfactuals aim to minimize the distance between the
target observation and the counterfactual; however, there
are more properties for a counterfactual explanation [22,
23]. Sparsity advocates for a minimal number of variable
alterations, thereby maintaining its simplicity. Minimality
focuses on the smallest possible changes in variable values.
Validity is maintained by minimizing the disparity between
the counterfactual instance, denoted as x′, and the obser-
vation x while ensuring the model output aligns with the
desired label y′. Proximity denotes the necessity of a slight
divergence between the factual and counterfactual features.
Plausibility mandates that counterfactual explanations re-
main realistic and adhere closely to the underlying data dis-
tribution. There are more than known 120 counterfactual
generation methods; see [24] for details. However, we consid-
ered three commonly used counterfactual methods to make
comparing the quality of counterfactuals feasible.

What-if counterfactual explanations. What-if method
(WhatIf) finds the observations closest to the observation
x from the other observations in terms of Gower distance,



Table 1: The details of the variables used to train our student success prediction model

Variable Description Class Values
gender student’s gender categorical {0, 1}
region the geographic region, where the student lived while taking the

module presentation
categorical {1, 2, ..., 13}

education the highest student education level on entry to the module pre-
sentation

categorical {1, 2, ..., 5}

imd_band the IMD band of the place where the student lived during the
module presentation

categorical {1, 2, ..., 10}

age_band a band of student’s age categorical {1, 2, 3}
num_of_prev_attempts the number of how many times the student has attempted this

module
numeric {0, 1, ..., 4}

credits the total number of credits for the modules the student is cur-
rently studying

numeric [60, 360]

disability indicates whether the student has declared a disability categorical {0, 1}
assessment_results the weighted sum of all previous assessments

∑4
i=1 wian where

wi = (0.125, 0.125, 0.250, 0.250) is the vector of weights T =
(0.125,0.125,0.25,0.25) is the vector of corresponding weights

numeric [24.25, 72.75]

n_clicks_disc_forum the number of clicks on discussion forum numeric [0, 7670]
n_clicks_disc_hpage the number of clicks on discussion homepage numeric [4, 3150]
n_clicks_assignments the number of clicks on assignments numeric [0, 7193]
n_clicks_quizzes the number of clicks on quizzes numeric [0, 4857]
n_clicks_course_page the number of clicks on course page numeric [0, 1196]

solving the following optimization problem [25]:

x′ ∈ argminx∈Xd(x, x′). (2)

Multi-objective counterfactual explanations. The multi-
objective counterfactual explanations method (MOC) ob-
jects to find counterfactuals corresponding to the valid-
ity, proximity, sparsity, and plausibility of solving a multi-
objective optimization problem [26]:

x′ ∈ minx[ov(f̂(x), y
′), op(x, x

′), os(x, x
′), opl(x,X)] (3)

where the objectives correspond to the desired properties,
validity, proximity, sparsity, plausibility, respectively. Thus,
it generates valid, proximal, sparse, and plausible counter-
factuals.

Nearest instance counterfactual explanations. The nearest
instance counterfactual explanations method (NICE) finds
the observations most similar to the observation in terms of
the heterogenous Euclidean overlap method [27]. Because
of the NICE method, there are two options in the object
function based on the properties proximity, and sparsity, it
can be used in these two ways.

The WhatIf method generates valid, proximal, and plausible
counterfactuals. It is shown that the MOC method gener-
ates more counterfactuals than other counterfactual meth-
ods that are closer to the training data and require fewer
feature changes [26]. Moreover, NICE generates the prox-
imity counterfactuals. However, there is no uniformly better
method in the datasets from different domains [21]. Thus,
evaluating the quality of the generated counterfactual is nec-
essary, and we conduct the experiments in the following sec-
tion.

2.3 Experiment design

This study focuses on which method provides the highest
quality counterfactual explanations for the student success
prediction model trained using the OULAD dataset. Thus,
our approach is (1) selecting the most appropriate MLmodel,
(2) generating the counterfactuals, and (3) producing the
evaluation criteria.

Modeling. We used forester [28] for model selection and
hyperparameter optimization. It is an AutoML tool that
adjusts the hyperparameters of tree-based models using
Bayesian optimization. The reason for using this tool in-
stead of manual modelling is its ability to make Bayesian
optimization highly practical with its relevant parameters.
Additionally, the fact that tree-based models exhibit lower
prediction performance than alternative complex models in
classifying tabular datasets [29] supports the idea that using
this tool does not limit model selection. The number of opti-
mization rounds bayes_iter is taken as 5, and the number of
trained models random_evals is taken as 10 in the AutoML
tool, respectively. forester returns 28 models, including deci-
sion trees, random forests, XGBoost, LightGBM, and their
fine-tuned versions with Bayesian optimization and random
search in Table 2. Because the best-performing one is a fine-
tuned random forest model with random search —accuracy
0.900, AUC 0.771, and F1 0.946— the counterfactuals are
generated on it.

Counterfactual generation. We used counterfactuals pack-
age [21] to generate the counterfactual explanations for the
at-risk students using the counterfactual generation methods
WhatIf, proximity-based NICE (NICE pr), sparsity-based
NICE (NICE sp), and MOC. The non-actionable variables
that are impossible to change are kept constant, such as gen-
der, disability, region, age_band, education, imd_-

band, num_of_prev_attempts, cummulative_assessment-

_results. The MOC, NICE pr, NICE sp, andWhatIf meth-
ods generate 191, 39, 19, and 120 counterfactuals for the 12



Table 2: The best score test table of forester
No Name Engine Tuning Accuracy AUC F1
1 ranger RS 3 ranger random search 0.900 0.771 0.946
2 xgboost RS 3 xgboost random search 0.900 0.801 0.946
3 lightgbm RS 1 lightgbm random search 0.900 0.787 0.946
4 xgboost bayes xgboost bayes opt 0.900 0.753 0.946
5 decision tree bayes decision tree bayes opt 0.900 0.809 0.945
6 lightgbm bayes lightgbm bayes opt 0.900 0.745 0.945
7 ranger model ranger basic 0.892 0.726 0.942
... ... ... ... ... ...
28 xgboost RS 4 xgboost random search 0.092 0.190 0.086

failed students predicted by the student success prediction
model. It is essential to compare the counterfactual genera-
tion methods in terms of the number of generated counter-
factuals because it shows the diversity of alternative ways to
flip the model decision. The higher number of counterfactu-
als is better. The materials for reproducing the experiments
performed and the dataset are accessible in the following
anonymized repository: https://github.com/mcavs/HEXED
2024_paper.

3. RESULTS AND DISCUSSION
The quality metricsminimality, plausibility, proximity, spar-
sity, validity are calculated to evaluate the generated coun-
terfactuals by the methods WhatIf, NICE pr, NICE sp, and
MOC. It should be highlighted that the lower values are bet-
ter for each metric. Some user studies have shown that the
users prefer to use the counterfactuals, which perform well
on the criteria in [30, 31]. Thus, we compared their qual-
ities in two steps. First, we used the average values and
the standard deviations of these metrics given in Table 3,
and second, we compared the distribution of the results in
Figure 2.

It is seen that the quality of counterfactuals is quite good
in terms of proximity, plausibility, and validity. However,
the results are not promising for WhatIf in minimality and
sparsity. It is expected because it is known the WhatIf
method generates valid, proximal, and plausible counterfac-
tuals. Therefore, we do not recommend using this method
in this domain. On the other hand, counterfactuals gener-
ated by the NICE method that optimizes based on sparsity
showed better results in sparsity and other quality metrics
than the one that optimizes based on proximity. There are
differences between the NICE pr and NICE sp in terms of
minimality and sparsity. NICE sp shows better performance
because it optimizes based on sparsity and the metrics spar-
sity and minimality are quite related metrics. Sparsity refers
to the changes in the number of variables while minimal-
ity refers the the smallest possible changes in the variable
values. Therefore, using the NICE sp method may be pre-
ferred to obtain better-quality explanations in this domain.
Although the MOC method shows results competing with
NICE sp, it is poor on average.

Figure 2 shows the distribution of the quality metrics of
the counterfactuals, providing deeper insights. The WhatIf
method appears to produce explanations that are not min-
imal compared to the others. Although the NICE pr was
better than the WhatIf method in this regard, it performed

worse than the other methods. When the methods are com-
pared in terms of plausibility, it is seen that the WhatIf
is better than the others, but the difference is low. While
the WhatIf method produced fewer proximity explanations,
other methods produced proximity explanations at a similar
level. A similar pattern against the WhatIf has also been ob-
served for sparsity. As expected, the NICE sp method shows
the best performance in terms of sparsity. Surprisingly, no
method other than the MOC produced non-validity expla-
nations. This is the most problematic quality feature for the
MOC. The intriguing observation is the quality of counter-
factuals generated by the MOC is better than the NICE pr
in terms of proximity, even though the NICE pr method
aims to create the proximity counterfactuals.

In summary, the quality of the explanations produced by the
methods compete with each other in terms of both average
and distribution properties, and it is not possible to say that
the NICE sp method produces the best quality explanations
based on visual outputs alone. Therefore, using the Kruskal-
Wallis test and the pairwise Wilcoxon test, we statistically
test whether the explanations made by the methods differ.
A Kruskal-Wallis test was performed on the quality met-
ric values of the four methods (MOC, NICE pr, NICE sp,
and WhatIf). The differences between the rank totals of the
methods were significant, χ2

(4) = 48.823, p < .001. Post hoc
comparisons were conducted using Wilcoxon Tests with a
Benjamini-Hochberg adjusted alpha level of .016. The dif-
ference between the MOC and NICE pr was no statistically
significant (p = .115). The other comparisons were signifi-
cant. The results of the statistical tests support the previous
results.

https://github.com/mcavs/HEXED2024_paper
https://github.com/mcavs/HEXED2024_paper


Table 3: The averages and standard deviations of the quality metrics for the methods

Metric MOC NICE pr NICE sp WhatIf
minimality 0.07 ± 0.36 0.71 ± 0.94 0 7.83 ± 1.26
plausibility 0.06 ± 0.03 0.04 ± 0.02 0.04 ± 0.02 0
proximity 0.02 ± 0.03 0.02 ± 0.01 0.02 ± 0.01 0.10 ± 0.03
sparsity 1.62 ± 0.83 1.95 ± 1.10 1 8.69 ± 1.25
validity 0.07 ± 0.05 0 0 0

Figure 2: The distributions of the quality metrics for the methods

4. CONCLUSIONS
In this study, we explored the possibilities of using XAI tools
in the frame of the TLA research. Our research focused on
deploying the counterfactual explanation methods on the
OULAD dataset containing the demographics, results and
learner interactions with LMS to answer the following re-
search questions: 1) What is the most appropriate method
for generating the counterfactual explanations? Selection of
the most suitable method depends on the stakeholder re-
quirements and the educational context. However, selecting
the most appropriate methods is generally guided by evalu-
ating standard counterfactual properties: Sparsity, Validity,
Proximity, and Plausibility. The evaluation of our approach
on the OULAD dataset resulted in the finding that explana-
tions generated using the NICE method based on sparsity
are of higher quality in terms of all considered metrics than
explanations generated through other methods (Table 3).
2) What is the most relevant quality measure of the meth-
ods for generating counterfactual explanations? As men-
tioned before, selecting a method depends highly on the ed-
ucational setting. Yet, it might be defined by the relevant
stakeholder as the most essential criteria chosen from those
used as a standard evaluation measure. In addition, the
statistical hypothesis testing results indicate no statistically
significant difference between the Nearest Instance Counter-
factual Explanation and the Multi-Objective Counterfactual
Explanations method, which indicates the requirement for

the deep validation of generated counterfactual explanations
for the at-risk students to avoid misconceptions. This sug-
gests that the human-in-the-loop is needed even when se-
lecting the most optimal method in technical validation. In
addition, the counterfactuals provide a simple way to un-
derstand and uncover the issues about learner learning and
open the path to recommendations for possible educational
interventions. Finally, the study has some limitations. Due
to the focus of the study, data drift was not considered, and
only the most common counterfactual explanation methods
were used. Furthermore, we believe that conducting quali-
tative studies and evaluating the explanations solely based
on quality metrics would provide further validation for the
findings.
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