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ABSTRACT

The challenge of creating interpretable models has been
taken up by two main research communities: ML researchers
primarily focused on lower-level explainability methods that
suit the needs of engineers, and HCI researchers who have
more heavily emphasized user-centered approaches often
based on participatory design methods. This paper reviews
how these communities have evaluated interpretability,
identifying overlaps and semantic misalignments. We
propose moving towards a unified framework of evaluation
criteria and lay the groundwork for such a framework by
articulating the relationships between existing criteria. We
argue that explanations serve as mediators between models
and stakeholders, whether for intrinsically interpretable
models or opaque black-box models analyzed via post-hoc
techniques. We further argue that useful explanations
require both faithfulness and intelligibility. Explanation
plausibility is a prerequisite for intelligibility, while stability
is a prerequisite for explanation faithfulness. We illustrate
these criteria, as well as specific evaluation methods, using
examples from an ongoing study of an interpretable neural
network for predicting a particular learner behavior.
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1. INTRODUCTION

The growing awareness in educational data mining (EDM) of
a need for more explainable AT (XAI) has led to the increas-
ing discussion and adoption of interpretability methods [12].
Such methods are continually being developed and refined
within research communities such as machine learning (ML)
and human-computer interaction (HCI). However, the criti-
cal task of evaluating the efficacy of the explanations created
has not been sufficiently explored. Tellingly, a systematic re-
view of explainable student performance prediction models
did not find a single study that evaluated the explanations
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it produced [1]. Furthermore, a standardized framework for
conducting such evaluations is still lacking [16].

In this position paper, we aim to foster discussion to begin
addressing this gap by proposing the goal of a unified frame-
work for evaluating explanations. We review concepts crit-
ical to the goals of XAl including the intended contexts of
an explanation, the multiple research milieux of explainabil-
ity and intelligibility, and proposed evaluation methods. We
argue that the evaluation of explanations should be based
on a set of criteria that must be met for an explanation
to be useful and propose a hierarchy of criteria that brings
together some previously described in the literature. Fi-
nally, we illustrate these criteria using an ongoing study of
an interpretable neural network for predicting a particular
learner behavior. We conclude by discussing the implica-
tions of this initial perspective on an evaluation framework
for future research in XAI.

2. WHAT TO EVALUATE?

The explainability literature has often highlighted the dif-
ference between intrinsically interpretable models that are
designed with transparency in mind and opaque black-box
models that require post-hoc explainability methods [13].
At face value, models and explanations seem like two very
different objects to evaluate. However, even intrinsically in-
terpretable models—such as linear regression models or deci-
sion trees—require some form of explanation to serve as me-
diator between the model’s internal state and a user’s under-
standing of it. This is true in cases of local explainability—
eg. the importance of a specific feature in a decision tree for
a particular prediction—but also when global explainabil-
ity is the goal—eg. the coefficients of a linear model, along
with their meanings and interactions, which provide an over-
all picture of the model’s behavior. From this perspective,
the evaluation of explainability can always be treated as the
evaluation of explanations.

3. INTENDED CONTEXT

When evaluating any explanation, one critical aspect to be
considered is the context in which the explanation is to be
used. An explanation that is useful for researchers carefully
analyzing and modifying a model’s behavior in a controlled
environment may not be useful for a teacher trying to un-
derstand in real time why a student is struggling with a
particular concept. The intended users for which the expla-
nation has been designed must clearly dictate the criteria
used to evaluate it. This is often what is meant by the term



“human-centered”, which is used in a commendable effort to
distance research from simplistic technocentric approaches,
instead emphasizing the importance of people. But identi-
fying “humans” as the target of our XAI efforts is still far
too broad.

When considering the requirements that an explanation
should aim to fulfill, it is useful to examine both the knowl-
edge and objectives of the intended users [23]. Teachers,
for example, may wish to help specific students with the
insights gained from an explanation. Their knowledge
includes their familiarity with their students and their
knowledge of the subject matter. Students, on the other
hand, may wish to know why a learning platform is making
a specific suggestion in order to gauge its effectiveness.
Their knowledge might include their level of familiarity
with self-regulation strategies, their current understanding
of the subject, and clues from what their peers are doing.
Researchers may wish instead to use an explanation to
better understand how to improve the model, which can
involve reducing bias, improving performance, or identifying
and fixing bugs that may be present [28].

Considering users’ knowledge and objectives requires a more
nuanced, context-aware approach to evaluation. Some stud-
ies have taken a bottom-up approach to understanding these
needs. Liao et al. [14] interviewed UX and design practi-
tioners to create an “XAl question bank” with prototypical
questions users may wish to have answers to. These in-
clude global questions about how a model works, local ques-
tions about why a specific prediction was made, counterfac-
tual questions of why not a different prediction, hypothetical
questions about how to change the prediction, and more.

A similar approach in education can yield insights into the
questions that teachers, students, and other stakeholders
may wish to have answered by an explanation. Alterna-
tively, it may be that interactive explanations—perhaps
made possible through the abilities of LLMs to answer
questions using natural language—will provide different
stakeholders with the information that is relevant to
them, while also allowing for follow-up questions to better
understand explanations [29].

4. EVALUATION CRITERIA

The XAI literature has highlighted several criteria to con-
sider when evaluating explanations. Due to the lack of a
standardized evaluation framework, these criteria often go
by different names, have varying semantic domains, or are
haphazardly used interchangeably. Some of the definitions
used in the literature implicitly suggest the existence of con-
ceptual dependencies between criteria. However, to the best
of our knowledge, they have not been previously described
hierarchically. Pulling from both the HCI and ML communi-
ties, we here propose a systematic hierarchy of criteria with
dependencies between them, as depicted in Figure 1.

The ultimate goal of an explanation is to be useful to the
user. In education, the user typically represents a stake-
holder in the learning process, such as a teacher, student,
parent, or administrator, but it can also be a researcher
who develops and improves the model.

Inteligiility Faithfulness
Plauqibili’ry S+abi1i+y

Figure 1: Evaluation criteria framework. Edges depict the
direction of dependence (A -> B = A is a prerequisite of B).

Intuitively, in order for an explanation to be useful, it must
meet the criterion of intelligibility, which refers to how well
it can be understood. This concept has also been called
“explicitness” [2] and “comprehensibility” [5]. As discussed
in the previous section, the specific context and target user
for which an explanation has been developed is crucial to
an accurate evaluation of intelligibility. In education, an
intelligible explanation is one that can be understood by a
student, teacher, or a different stakeholder, depending on
its intended context. The term “intelligibility” arose within
the HCI community [4] and continues to be the predominant
term used by HCI researchers for what the ML community
refers to as “explainability” or “interpretability”. We dis-
cuss further differences and similarities between these two
communities later in this paper.

Just as intuitively—though slightly more contentiously—
useful explanations must also be faithful. In this context,
faithfulness refers to the level of accuracy with which an ex-
planation reflects the model’s internal state [2, 9]. Faithful
explanations have also been called accurate explanations [21]
and high-fidelity explanations [5, 18]. Faithful explanations
can be thought of as providing a view of the model’s inter-
nal causality (what leads to its predictions). In education,
a faithful explanation is one that provides accurate insights
into why a model has made a specific content prediction,
such as a study content recommendation or the detection of
learner disengagement.

Unlike with intelligibility, however, there is not universal
agreement on the necessity of explanation faithfulness. This
disagreement arises from the use of post-hoc explainability
techniques—such as LIME [20] and SHAP [17]—that derive
explanations from a simplified approximation of a more com-
plex model. Post-hoc explanations don’t directly access a
model’s internal causality, but rather provide a justification
of predictions after-the-fact. Some argue that a lack of faith-
fulness can lead to misleading and problematic explanations
[21, 25] while others suggest that approximate explanations
can be used to achieve “sufficient understanding” for specific
users performing specific tasks [15]. We argue that, while
perfect faithfulness to a model may not be necessary in all
contexts, a high level of faithfulness is nevertheless impor-
tant for an explanation to be useful.

Note that intelligibility and faithfulness are independent cri-
teria. An explanation can be very intelligible but not partic-
ularly faithful, or highly faithful but quite unintelligible. Yet



a useful explanation requires both conditions to be present
past a minimum threshold.

Another criterion described in the literature is plausibility
[9]. A plausible explanation is one that aligns with human
intuition. For example, explaining that a model predicts a
student is disengaged because they did well on a problem
is nonsensical. Cases of an explanation that is faithful but
not plausible serve as evidence of a problem with the model
itself—perhaps it is overfitted and is picking up on noise in
the training data. Because plausibility is important to sense-
making, we argue that it is a prerequisite for intelligibility.

Stability refers to the consistency of an explanation for sim-
ilar examples [2, 5]. That is, an explanation is stable when
it provides similar results for similar inputs. For example,
one would expect a learner model to provide similar latent
knowledge estimates on a particular knowledge component
for students who encountered similar struggles on the same
problems. If an explanation is not stable, it is difficult to
trust it as a reliable source of information. Stability is also
a prerequisite for faithfulness. If an explanation is not ad-
equately stable, it is unlikely to be faithful to the model’s
internal state.

5. BRIDGING PERSPECTIVES

As noted earlier, our evaluation criteria hierarchy for expla-
nations is informed by two distinct research communities:
the ML and HCI communities. While there is much overlap
between them, Liao & Varshney [15] have pointed out a ten-
sion in the goals and methods used by these two communi-
ties. The ML community and the XAI sub-community have
primarily focused on technical solutions to the challenge of
interpretability, often relying on lower-level explainability
methods that suit the needs of engineers. The HCI commu-
nity, on the other hand, has been more heavily informed by
the social and information sciences, which has led to more
user-centered approaches often based on participatory de-
sign methods.

The terms and definitions used by these communities are
illustrative of their differing perspectives. The ML commu-
nity has settled on terms such as “explainability” and “in-
terpretability”, and has even fostered a growing group of
eXplainable AT (XAI) researchers. The coining of the term
XAT has been attributed to van Lent et al. [27], who used it
to describe a system that can present an “easily understood
chain of reasoning” from input, “through the AT’s knowledge
and inference”, to the final prediction. The HCI commu-
nity, on the other hand, prefers the term “intelligibility”,
which was originally defined as systems that “represent to
their users what they know, how they know it, and what
they are doing about it” [4]. Notice the emphasis that ex-
plainability places on the prediction process from input to
output, contrasted with the pragmatic emphasis on users
in the HCI definition. Yet despite these differences, there
are more overlaps between these communities than points of
divergence.

It may be that at least part of the tension described by
Liao & Varshney [15] is the result of a semantic misalign-
ment between the two groups. Technical approaches tend
to emphasize explanation faithfulness because they empha-

size the role of engineer-researcher as the target user, while
socio-behavioral approaches care more about explanation in-
telligibility that have non-researchers as the end-users. In
other words, while both communities are working towards
the same goal of making AI understandable by people, they
are doing so from different perspectives and with different
priorities, which leads them to sometimes talk past each
other without realizing it. Vaughan & Wallach [28] argue for
a bringing together of these communities to create a more
holistic approach to XAI.

It should also be noted that some HCI researchers include
aspects of transparency not often considered to be within
the realm of explainability as crucial to its goals. These go
beyond the internal workings of a model, including expla-
nations of the data used for training, performance metrics,
levels of uncertainty, and the types of features it relies on
[15, 28]. Among education researchers, Kay et al. [11] make
reference to the concept of scrutability in the sense of being
able to scrutinize a model or system (with a heavy focus
on learners as target users). Full scrutability may require
similar aspects of transparency that go beyond the model
itself.

6. EVALUATION METHODS

An additional layer above that of which evaluation criteria
to use is the question of which methods to use to evaluate
explanations. The evaluation method will dictate the spe-
cific criteria that can be measured. Using Doshi-Velez &
Kim [8] as a guided taxonomy of evaluation methods, we
can see how the evaluation criteria framework we have pro-
posed can be used alongside these different methods. Within
this taxonomy, the choice of evaluation method depends on
the domain-specific needs and the context of intended inter-
pretability.

Doshi-Velez & Kim [8] propose three categories of evaluation
methods. In decreasing level of resource complexity, they
are:

e Application-grounded evaluation, which involves
human users performing realistic tasks.

e Human-grounded evaluation, which involves human
users performing simplified tasks.

e Functionally grounded evaluation, which does not in-
volve humans but rather uses quantifiable properties
of explanations as a proxy for interpretability.

An example of application-grounded evaluation in education
is the way learning dashboards are sometimes evaluated by
how well they help instructors understand and provide help
to students [22, 26], or work on open learner models (OLMs)
that provide students with explanations of a model’s esti-
mates of their understanding [7]. This evaluation method
can be used to effectively measure explanation intelligibil-
ity (and, by extension, plausibility), but it does not directly
tackle the question of explanation faithfulness.

Functionally grounded evaluation, being the least direct cat-
egory, makes it difficult to make any claims about either
intelligibility or faithfulness. It allows for a proxy mea-
surement of intelligibility by considering properties such as
model sparsity or explanation simplicity [18], but it does



not capture the specific needs of any end-user. While it
can be helpful to consider potential target users while con-
ducting this type of evaluation—ideally realistic stakehold-
ers in education—the results are generally context-agnostic
and therefore may lack real-world validity. Stability is per-
haps the only criterion that can effectively be evaluated us-
ing functionally grounded evaluation. This method may be
most appropriate for preliminary studies in an area without
much prior research.

Some forms of human-grounded evaluation, on the other
hand, are more likely to capture evidence of explanation
faithfulness. Doshi-Velez & Kim [8] identify three examples
within this category: binary forced choice, forward simula-
tion, and counterfactual simulation.

In binary forced choice, participants must select which ex-
planation they consider best when presented with multiple
options. This method was used in an educational context
by Swamy, Du, et al. [24] to gauge which explanations
were trusted most by university-level educators. This some-
what approximates a measurement of plausibility by allow-
ing participants to identify explanations that match their
intuitions, but it does not truly measure intelligibility. It
also does not evaluate faithfulness.

In forward simulation, participants must correctly predict
the model’s output given specific inputs. An experiment
along these lines was proposed by Baker [3] to test inter-
pretability. This provides a very direct measurement of
faithfulness, since an explanation must be faithful in order
for the task to be performed accurately. It also serves to
measure intelligibility, since participants must understand
the explanation to succeed. However, given a sufficiently
simple model, it may be possible to succeed at a forward
simulation task by only using a model’s parameters as ex-
planation without understanding the purpose, features, or
even the domain for which the model was built.

A counterfactual simulation is similar to a forward simula-
tion, but participants must correctly identify how a specific
input needs to be changed in order to alter the model’s given
output. This also allows for an evaluation of both faithful-
ness and intelligibility, but the same caveats apply as for
forward simulation. The ability to recognize valid counter-
factuals has been identified by Cohausz [6] as a key step to-
wards using machine learning to design theoretically sound
causal models.

7. EVALUATION CASE STUDY

We now turn to an illustration of the concepts discussed here
using an ongoing study of an interpretable neural network
for predicting a particular learner behavior. The model in
question is a convolutional neural network (CNN), designed
to be interpretable via targeted regularization to create bi-
nary convolutional filters that more accurately align with
the input data [10]. The CNN was trained to predict stu-
dents’ gaming the system behavior (GTS) on a dataset of
interactions with the Cognitive Tutor Algebra system. The
details and results of an early version of this model were
previously reported in Pinto et al. [19].

7.1 Setting up the questionnaire tasks
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Figure 2: Example visualization from the questionnaire that
serves as the core of the model’s explanation.

To evaluate the level of interpretability of this model, we
designed a questionnaire that tasks participants with both
a forward simulation and counterfactual simulation. The
questionnaire is designed for participants from a wide range
of backgrounds—both with and without prior experience in
machine learning.

The forward simulation task presents participants with the
inputs for a particular instance—that is, the values for each
variable for a given “clip” of five consecutive student actions.
They must then predict whether the model would label this
clip as GTS or not GTS, given the patterns in the convolu-
tional filters.

The counterfactual simulation task again presents partici-
pants with the inputs for a specific clip, but this time also
providing the model’s predicted label. Participants are
asked to identify a single change to the inputs that would
alter the model’s prediction. For example, given a series of
inputs and the model’s prediction of not GTS, what change
to the inputs would result in the model labeling this clip as
GTS. Participants select the single correct answer from a
series of multiple-choice options.

Figure 2 shows an example from the digital questionnaire
platform. The inputs (leftmost blue grid) are presented in
a simplified tabular format: a grid with features stacked
vertically (labeled v01-v24), with each column representing
a separate action in the sequence (labeled 1-5). Blue cells
indicate a feature value of 1 (present), while white cells indi-
cate a feature value of 0 (absent). The binary convolutional
filters (green grids) are represented in the same manner, but
each only depicts three actions to match the kernel size of
the model’s convolutional layer.

This visualization—along with the background information
provided—serves as the model’s explanation, showing the
patterns that the model has learned to associate with GTS
behavior. It presents both a global explanation of the
model’s logic (patterns that are indicative of GTS) and
explanations of specific outputs (the model’s prediction for
a particular clip of student actions). The questionnaire is
used as a tool to evaluate the explanations themselves.



For the forward simulation task, the instructions ask the
following questions: “would the model identify the following
clip of student actions as GTS or not GTS? If GTS, what is
the number of the matching model pattern?” In the coun-
terfactual simulation task, we ask “which of the following
changes to the input would alter the model’s prediction?”
Possible answers for the counterfactual simulation include
the addition or removal of specific actions, such as “add v07
to action 2” or “remove v19 at action 4”. For both tasks, we
also ask participants to rate their confidence on each ques-
tion.

7.2 Evaluating the evaluation

The evaluation methods used in this questionnaire clearly
fall within the category of human-grounded evaluation in the
method taxonomy proposed by Doshi-Velez & Kim [8]—they
involve human users performing simplified tasks. As such,
they provide measurements of faithfulness and intelligibility.
By calculating the average accuracy rate (proportion correct
out of total questions) across the entire sample of partici-
pants, we can quantify how well the explanations were un-
derstood (intelligibility). Because the tasks align so closely
with the model’s actions, the accuracy rate also serves to
measure how well the explanations reflect the model’s inter-
nal state (faithfulness).

However, the caveat provided earlier in regards to
forward and counterfactual simulation tasks applies here—
participants are not required to understand the specific
purpose of the model or the value of its predictions in order
to succeed. In fact, while we present an explanation of
GTS and the aims of the model as background information,
we've entirely excluded meaningful feature labels from the
explanations. This approach makes it impossible to evaluate
explanation plausibility, weakening its claims of evaluating
intelligibility beyond a surface-level understanding.

Furthermore, this questionnaire does not claim to target any
specific end-users. It has been designed for participants from
a wide range of backgrounds, and for no specific purpose
other than its completion. We previously highlighted the im-
portance of intended context when evaluating explanations,
which is difficult to account for using the simplified tasks of
human-grounded methods. An application-grounded evalu-
ation would allow for a better understanding of the specific
needs of end-users, but it would also make it difficult to
measure faithfulness and would require a more complex and
time-consuming study design [8]. When it comes to design-
ing an evaluation, tradeoffs may be necessary.

8. DISCUSSION

Much like the complexity of evaluating the different aspects
of a model’s performance, the evaluation of explanations is
itself a complex task and cannot be captured in its entirety
by any one metric or method. We have aimed to provide an
initial framework to guide this daunting but important task.
However, much work remains to be done.

We have brought together evaluation criteria described by
different communities into a cohesive whole, but they largely
remain abstract ideas. In order to be useful in practice, these
criteria must be operationalized more concretely in the ed-
ucational contexts in which we wish to use them. Further-

more, this high-level overview is likely missing key criteria
that measure aspects of explanations that are currently not
being captured.

For example, when describing the aspects of intelligibility
that can be captured by human-grounded evaluation meth-
ods, as well as those that may go overlooked by such an
approach, we found that we didn’t have the exact language
to elucidate our point. It may be that there is an element
of intelligibility that requires an additional criterion to fully
capture—something along the lines of an explanation’s fi-
delity to its intended context.

Similarly, the framework’s hierarchical structure itself may
benefit from further scrutiny. Edge cases theoretically could
exist that don’t perfectly fit, such as the possibility of a
highly overfitted model leading to explanations that are
faithful but not very stable.

Nevertheless, future research may build on the framework
and ideas presented here to create a more comprehensive
evaluation framework for explanations. A unified framework
should be adaptable to the specific needs of different con-
texts, should be informed by the perspectives of both the
technical ML and human-centered HCI communities, and
should be relevant to the needs of stakeholders in education.

9. CONCLUSION

In this position paper, we have proposed the need for a uni-
fied framework for evaluating explanations in the context
of XAIL. We have reviewed important concepts for better
understanding the nature of explanations, including their
role as mediators between models and users, the central role
played by an explanation’s intended context, and the varied
perspectives brought by different research communities. We
have further argued that useful explanations require both
faithfulness and intelligibility, and have proposed a hierar-
chy of criteria that brings together concepts previously de-
scribed in the literature. Finally, we have provided a case
study for these criteria using the ongoing evaluation of a
neural-network-based learner behavior detector.
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